Use this website for formula erfc ( x ) = 2 π ∫ x ∞ e − t 2 d t = e − x 2 x π ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! n ! ( 2 x ) 2 n {\displaystyle \operatorname {erfc} (x)={\frac {2}{\sqrt {\pi }}}\int _{x}^{\infty }e^{-t^{2}}\,dt={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{\infty }(-1)^{n}{\frac {(2n)!}{n!(2x)^{2n}}}}
π = 3 4 3 + 24 ∫ 0 1 / 4 x − x 2 d x {\displaystyle {\pi }={\frac {3}{4}}{\sqrt {3}}+24{\int _{0}^{1/4}}{{\sqrt {x-x^{2}}}dx}}
3 x − 1 + ( 1 + x ) 2 {\displaystyle {\sqrt {3x-1}}+(1+x)^{2}}
π r 2 {\displaystyle {\pi }r^{2}} 4 π ϵ r 2 {\displaystyle 4{\pi }{\epsilon }r^{2}}
How to write a matrix:
<math> \begin{matrix} a & b \\ d & e \end{matrix}</math>
The & sign separates columns and the "\\" separates the rows
a b d e {\displaystyle {\begin{matrix}a&b\\d&e\end{matrix}}}
s = u t + 1 2 ( a t 2 ) {\displaystyle s=ut+{\frac {1}{2}}(at^{2})}
Chemical formula: Sulphuric Acid - H 2 S O 4 {\displaystyle H_{2}SO_{4}}
a ¯ {\displaystyle {\bar {a}}}
y x {\displaystyle {\sqrt[{x}]{y}}}
∃ {\displaystyle \exists } ∂ {\displaystyle \partial }
45 {\displaystyle {\sqrt {45}}} ∑ x {\displaystyle \sum _{x}} ∑ x n = x ¯ {\displaystyle {\frac {\sum {x}}{n}}={\bar {x}}}